Seasonal Migration Determined by a Trade-Off between Predator Avoidance and Growth
نویسندگان
چکیده
Migration is a common phenomenon in many organisms, terrestrial as well as aquatic, and considerable effort has been spent to understand the evolution of migratory behaviour and its consequences for population and community dynamics. In aquatic systems, studies on migration have mainly been focused on commercially important fish species, such as salmon and trout. However, seasonal mass-migrations may occur also among other freshwater fish, e.g. in cyprinids that leave lakes and migrate into streams and wetlands in the fall and return back to the lake in spring. In a conceptual model, we hypothesized that this is an adaptive behaviour in response to seasonal changes in predation (P) and growth (G) and that migrating fish change habitat so as to minimise the ratio between predation mortality and growth rate (P/G). Estimates from bioenergetic modelling showed that seasonal changes in the ratio between predator consumption rate and prey growth rate followed the predictions from the conceptual model and also gave more precise predictions for the timing of the habitat change. By quantifying the migration of more than 1800 individually marked fish, we showed that actual migration patterns followed predictions with a remarkable accuracy, suggesting that migration patterns have evolved in response to seasonally fluctuating trade-offs between predator avoidance and foraging gains. Thus, the conceptual model provides a mechanistic understanding to mass-migration in prey fish. Further, we also show that the dominant prey fish is actually absent from the lake during a major part of the year, which should have strong implications for the dynamics of the lake ecosystem through direct and indirect food-web interactions.
منابع مشابه
Trade-offs between predator avoidance and electric shock avoidance in hermit crabs demonstrate a non-reflexive response to noxious stimuli consistent with prediction of pain.
Arthropods have long been thought to respond to noxious stimuli by reflex reaction. One way of testing if this is true is to provide the animal with a way to avoid the stimulus but to vary the potential cost of avoidance. If avoidance varies with potential cost then a decision making process is evident and the behaviour is not a mere reflex. Here we examine the responses of hermit crabs to elec...
متن کاملSizing up your enemy: individual predation vulnerability predicts migratory probability.
Partial migration, in which a fraction of a population migrate and the rest remain resident, occurs in an extensive range of species and can have powerful ecological consequences. The question of what drives differences in individual migratory tendency is a contentious one. It has been shown that the timing of partial migration is based upon a trade-off between seasonal fluctuations in predatio...
متن کاملA chemically mediated trade-off between predation risk and mate search in newts
Previous studies have demonstrated that adult male red-spotted newts, Notophthalmus viridescens, are attracted to female sexual pheromones and avoid conspecific alarm substances that signal predation. In this study, we tested the response of red-spotted newts to different concentrations and combinations of macerated male newt extract (MNE) and gravid female odour in the laboratory and field. In...
متن کاملBehavioural Syndrome in a Solitary Predator Is Independent of Body Size and Growth Rate
Models explaining behavioural syndromes often focus on state-dependency, linking behavioural variation to individual differences in other phenotypic features. Empirical studies are, however, rare. Here, we tested for a size and growth-dependent stable behavioural syndrome in the juvenile-stages of a solitary apex predator (pike, Esox lucius), shown as repeatable foraging behaviour across risk. ...
متن کاملThe evolution of photoperiod response systems and seasonal GnRH plasticity in birds.
Animals' lives are typically subdivided into distinct stages, some of which (e.g. breeding) contribute to fitness through enhancing current reproductive success, and some of which (e.g. molting and migration in birds; hibernation in mammals) contribute to fitness through enhancing survival and, therefore, future reproductive opportunities. There is often a trade-off between these two kinds of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008